If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+28x+58=0
a = 2; b = 28; c = +58;
Δ = b2-4ac
Δ = 282-4·2·58
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-8\sqrt{5}}{2*2}=\frac{-28-8\sqrt{5}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+8\sqrt{5}}{2*2}=\frac{-28+8\sqrt{5}}{4} $
| x/3+1=-2 | | 1/4=3(-1/4k | | -4(b-4)=-8 | | 2x^2-41x+131=0 | | y^2+y^2=-52/5 | | 4(b+3)=12 | | 2x-5(x-5)=-9+4x-8 | | 5y^2+y^2=52 | | 5x-6+5x-6=26 | | 9x+6=4x-5 | | m-23/6-5m-7/7=1 | | -2+p/9=-3 | | -4+5r=1 | | 1/5=x+4/9 | | 2/9*x+13=11-3/8*x | | 3(m-4)=-15 | | 2/5x^2-40=0 | | (8-n)÷7=1 | | 4x+12+6x=32 | | 4(x+5)+6=4x+3 | | 2(x+9)+3=2x+8 | | .5t+.12(t+1)=5.7 | | 2^(4x-1)=16 | | 4(n-2)=-40 | | -1+a/8=-2 | | 6x+26=32 | | 5=(w/2.2w) | | 8-n/7=1 | | (3a-5)-10=7 | | 2.5/6=10/x | | a/6+69=4a | | 33-3/4a=2a |